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Abstract: In this paper a neural network based framework is 
developed for predicting core losses of wound core distribution 
transformers at the early stages of transformer construction. The 
proposed framework is also used to improve the grouping process of 
the individual cores so as to reduce the variation in core loss of 
assembled transformer. Several neural network structures and the 
respective training sets have been stored in a database, 
corresponding to the various magnetic materials. Selection of the 
most appropriate network from the database is relied on the 
satisfaction of customers’ requirements and several technical and 
economical criteria. In case that the network performance is not 
satisfactory, a small adaptation of the retrieved network weights is 
performed. A decision tree methodology has been adopted to select 
the most appropriate attributes used as input vectors to the neural 
networks. Significant improvement of core loss prediction is 
observed in comparison to the current practice. 

Keywords: Wound Core Distribution Transformers, Iron Losses, 
Neural Networks, Adaptive Learning, Decision Trees. 

I. INTRODUCTION 

In an industrial environment, dealing with distribution 
transformer construction, accurate prediction of iron losses is 
an important task, since they constitute one of the main 
parameters of the transformer quality. 

Furthermore, accurate prediction of transformer iron 
losses protects the manufacturer from paying loss penalties. 
In order to avoid this risk, and in view of the fact that iron 
losses cannot be accurately predicted in the current practice, 
one possible method is to design the transformer at a lower 
magnetic induction, resulting in an increase of the 
transformer cost since more magnetic material is required [l]. 
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Satisfactory prediction of iron losses, however, can be 
achieved only if various parameters involved in the process, 
both qualitative and quantitative, are taken into consideration. 
Instead, in the current practice, only the loss curve is used, 
i.e., the influence of the rated magnetic induction on iron 
losses for each specific magnetic material. This is dictated by 
the fact that there is no analytical relationship expressing the 
effect of the other parameters on transformer iron losses. 

For this reason, accurate prediction of iron losses has 
become a topic of extensive research in the field of 
transformer construction. In [2] the effects of a number of 
core production attributes on transformer core loss 
performance have been investigated. In [3] spatial 
distribution components and total core losses are calculated 
using a generic 2D finite difference method. Both papers 
have been concentrated on stacked transformer cores. In case 
of wound core type, the influence of magnetic material, 
constructional and core production parameters has been 
studied in [4] using Decision Trees for quality improvement 
of individual cores. Artificial Neural Networks are used for 
prediction of iron losses in [5 ]  for both individual and 
transformer cores. In that work prediction of iron losses has 
been concentrated on a specific supplier, thickness and grade 
of magnetic material. In this paper the problem is treated in a 
more general way, i.e., several suppliers and various 
thickness and grade of magnetic material are taken into 
account. Furthermore, additional attributes have been 
investigated, compared to our work presented in [5 ] ,  for 
increasing the prediction accuracy. 

To achieve these goals the approach proposed in [5] has 
to be extended by using several neural networks and by 
storing the respective training sets in a database. Each of 
neural networks is suited to a different condition 
(environment), i.e., to a certain supplier, grade and thickness 
of magnetic material. Selection of the most appropriate 
network (or equivalently environment) is based on the 
satisfaction of customers’ requirements and several technical 
and economical criteria [6]. 

Furthermore, in this approach selection of the most 
relevant attributes among the candidate ones, used as inputs 
to the networks, is performed based on the Decision Tree 
methodology, instead of the heuristic method used in [ 5 ] .  
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Additionally, an adaptively learning procedure has been 
investigated in this paper for efficiently improving the 
network performance during its operation. Experimental 
results indicating the good performance of the neural network 
scheme as far as core loss prediction is concerned are 
presented. Significant improvement of core loss prediction is 
observed in comparison to the current practice. 

This paper is organized as follows: the current practice for 
predicting iron losses is presented in Section 2, and the 
proposed neural network framework is given in Section 3. 
Section 4 describes the selection of attributes, and Section 5 
refers to the individual core grouping process. Section 6 
presents the results of the extensive verification of the 
proposed method on actual commercial transformers 
produced in the considered industrial environment. Section 7 
concludes the paper. 

11. THE CURRENT PRACTICE FOR PREDICTING 
IRON LOSSES 

In order to construct a three-phase wound core 
distribution transformer, two small individual cores (width of 
core window equal to F1) and two large individual cores 
(width of core window equal to F2) should be assembled 
(Figure 1). In general, the width F2 is twice F1. 

“tl’ 

Fig. 1. Assembled active part of wound core distribution 
transformer. 

As it is observed from Figure 1 the four cores are 
arranged in space as (from left to right): a small core, 
followed by a large, followed by another large and finally 
followed by a small one. In our industrial environment, we 
denote as “11” and “12” the left small and large core 
respectively, while as “13” and “14” the other two cores. 
Thus, the core arrangement from left to right will be “11”- 
“12”-“13”-“14” as it is depicted in Figure 1. 

The theoretical iron losses, say DSFL,, of the i-th 
individual core are given by: 
DSFL, = DWPK, * DKg, , i =“1Y ,..., “14’ (1) 
where DWPK, are the theoretical specific iron losses of 
individual core at the rated magnetic induction obtained 

from Figure 2 and DKgi is the core theoretical weight as 
defined in [4]. It should be noticed that the specific iron 
losses are defined as losses per weight unit. 

Fig. 2. Typical loss curve. 

Consequently, the theoretical total iron losses, say 

(2) 
Furthermore, the theoretical iron losses, say DNLLTF, of 

DSFhF, of the four individual cores are: 
DSFL, = DSFL.,,. + DSFL,, + DSFL,, + DSFL ,4 

the assembled three-phase transformer are provided by: 
DNLL, = DWPK,, * DKgTF (3) 
where D WPKTF denotes the theoretical transformer specific 
iron losses at the rated magnetic induction, also obtained 
from Figure 2, and DKgTF the theoretical total weight of 
transformer evaluated as follows: 
DKg, = DKg.,,. + DKg.,, -k DKg,,, + DKg.,, (4) 

It should be noticed that during transformer construction 
actual weights and losses of individual cores diverge from the 
theoretical ones. In order to produce acceptable transformers, 
given the iron losses of individual cores, a suitable grouping 
algorithm is applied. 

Particularly, assuming that we have L small cores and L 
large cores and L is an even number, then U2 transformers 
can be assembled. Each transformer has four positions where 
cores can be put. As we have stated the two outer positions 
are occupied from small cores while the other two middle 
positions are occupied by large cores (Figure 1). Each small 
core can be put to any of the two positions and to any of the 
U2 transformers. The same assumption exists for each large 
core. From all possible combinations of grouping U2 
transformers, only one combination, providing the optimum 
core loss performance, should be selected. 

Core I s 1  I s 2 I s 3 I s 4 I L 1 1 L 2 I L 3 ) L A )  
Losses(W)I 65.2 165.4 164.3 165.1 174.2 173.9 174.7 174.2 

Table 1: Actual Iron Losses of Individual Cores. 

In the current practice, selection is based on the 
minimization of the deviation of actual total iron losses of 
individual cores (parameter ASFLTF, defined in Appendix A) 
from the theoretical ones (parameter DSFLTF, defined in (2)) .  
To clearly illustrate the aforementioned procedure an 
example is presented in the following. Let us assume that 4 
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small cores (sl ,  s2, s3, s4) and 4 large cores (Ll, L2, L3, L4) 
are going to be assembled producing two transformers (T/Fs). 
Table 1 presents the actual iron losses for each individual 
core. 

According to the current practice the deviation of the 
actual total iron losses, denoted as Div, should be minimized: 
That is, 

Arrangement 
#1 

Div = (Target - ASFGFsi 
i=l 

lst T/F 2"d TIF Div 

Sl-L3-U-S2 S3-Ll-L2-S4 2.00 

where Target is calculated from Table 1 as follows: 

Target = ksV = 2785 W 
2 

c A k  

#3 I Sl-Ll-L3-S3 

(5) 

S2-L2-LA-S4 0.02 

and ASFLTF,~ are the actual total iron losses of the four 
individual cores of the i-th transformer. In (6), Ak is the 
actual iron losses of the k-th individual core, where k belongs 
to the set V = {sl,s2,s3,s4, L1, L2, L3, U}. 

Among various possible arrangements of cores, three of 
them are presented in Table 2 along with the respective value 
of parameter Div. The #1 arrangement corresponds to the 
maximum value of Div, the #2 to an intermediate value and 
the #3 to the minimum value of Div. The #3 arrangement has 
been selected since it corresponds to the minimum deviation. 

I I I #2 I sl-Ll-U-s2 I s3-L2-L3-s4 I 0.50 I 

III. THE PROPOSED NEURAL NETWORK 
FRAMEWORK 

A novel neural network architecture is proposed in this 
paper for predicting transformer specific iron losses at the 
early stages of transformer construction. Figure 3 presents the 
overall procedure of the proposed structure consisting of two 
main modules; a neural network database and an adaptation 
mechanism. 

Y 
Technicalan3 

Ciiteria 
I 

Fig. 3. The proposed neural network scheme for predicting 
transformer iron losses. 

The goal of the f i s t  module is to discriminate the effect 
of a different environment to the specific iron losses while 
the second module aims at slightly modifying the network 
weights, in case that the average absolute relative error is 
beyond an accepted limit. The iron loss prediction, provided 
by the proposed neural network framework, is next used for 
developing an innovative individual core grouping algorithm 
described in Section 5. In the following we describe the 
implementation of each module as well as the network design 
and structure used. 

A. Network Design and Structure 

In the following, the term environment refers to a given 
supplier, thickness and grade of the magnetic material. Since 
each supplier follows a specific technology of producing the 
magnetic material and each grade andlor thickness of 
magnetic material has its own technical characteristics, 
different neural network structures are required for a specific 
environment. 

Extensive experiments show that the network 
performance is unacceptable, if samples of all environments 
were used as training set. Almost similar results have been 
observed even if the parameters of the environment (i.e., the 
supplier, grade and thickness of the magnetic material) are 
used as neural network input vectors. 

Hence, let us denote as Ni, i=1,2,..,M the neural network 
corresponding to the i-th environment with its respective 
structure and training set denoted as Ri and Si respectively. A 
multilayer feedforward network structure has been adopted in 
this paper, trained using the backpropagation variant 
algorithm [7]. The learning set consists of measurements 
obtained by data acquisition systems of high accuracy during 
the transformer construction process. To appropriately select 
the input vectors of each network, a Decision Tree 
methodology has been adopted as it is described in the 
following. Such a selection leads to fast convergence of the 
neural network training as well as to better network 
performance to data outside the training set (good 
generalization). A validation set has been used during 
training to control the generalization ability of the network. 
Furthermore, the appropriate structure of the network is 
provided using a constructive technique, which begins with a 
small sized network and subsequently adds neurons to 
improve the network performance [8]. 

B. Network Weight Adaptation 

The application of the above M neural networks to the 
industrial environment considered has shown that, in some 
cases, there is a need to improve their performance, since 
slight changes of the considered conditions may occur. For 
this reason, a small modification of the respective network 
weights is performed. This modification is based on the 
creation of a new training set, say, 
S, = {(x, ,d,);..,(x, ,dm)} which is formed using 
additional measurements of the current conditions, with 
subscript rn denoting the number of elements of S,. In the 
previous definition, xi is the i-th training input vector and di 
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the respective desired output. Let us also denote by 
S, = {(x; ,d;) , . . -  ,(xj , d o }  the training set which exists in 
the network database and by 1 the number of its training 
samples. The XI and dz' are the i-fh training element and the 
respective desired output for the set S, . If we also denote by 
w, the network weights before the adaptation and by w, 
those obtained after it, then these new weights are estimated 
by minimizing the following error: 

E = E, +qEb (7) 
where E c ,  given by: 

expresses the error over the data of set S, and E, is the error 
over the data of the S, : 

(9) 

In (S), (9) z, denotes the network output when the new 
weights are used that is the transformer specific iron losses 
after the small weight adaptation and II.II, denotes the & 

where the elements of matrix K are expressed in terms of the 
previous network weights wb and the training data in s b  

[lo]. Thus, the problem results in minimization of (13) 
subject to constraints imposed by (12). 

The error function defined by (13) is convex since it is of 
squared form and the constraints in (12) are linear equalities. 
Thus, a global minimum exists. A variety of methods can be 
used to estimate the weight increments based on 
minimization of (13) subject to (12). In this paper we adopt 
the gradient projection method [ 111. The philosophy of this 
technique is, starting from a feasible point, to move in a 
direction which decreases (13) and simultaneously satisfies 
the constraints (12). 

IV. ATTRLBUTE SELECTION 

To appropriately select the input vectors of the network 
structure, a large set of candidate attributes is formed based 
on extensive research and transformer designers' experience. 
These attributes correspond to parameters, which actually 
affect the transformer iron losses. The task of deciding which 
of the candidate attributes should be selected as input vectors 
is an arduous task. For this reason, a Decision Tree (DT) 
methodology [12,13] is used to indicate the most 
characteristic ones. This methodology aims at reducing the 

(Euclidem) nom. (71, is a factor that dimensionality of the input space by dismissing attributes, 
which do not carry useful information to predict the output controls the significance of the two terms. A value around 0.7 [13]. The DT technique provides not only attribute selection, is found to be satisfactory. but also attribute ranking in the sense that it assigns an Assuming a slight change of the environment, the weights information quantity to each attribute [12]. before and after the adaptation are related as: 

Given a transformer acceDtabilitv criterion he.. tvDe and . - I  

W, = W, +Aw (10) threshold value), a DT is built toclassify samples and to 
where Aw is a small quantity compared to wb and w, . 

To stress the importance of current training data in (7), 
one can replace (8) by the constraint that the actual network 
outputs are equal to the desired ones, that is: 

(11) 
It can be proved in [9] that solution of (1 1) with respect to 

the weight increments can be decomposed to the following 
system of linear equations: 
c = A . A w  (12) 
where vector c and matrix A can be expressed as a function 
of the previous network weights. In particular, the vector c 
corresponds to the difference between the network output 
before and after the adaptation for all data in set S,. The 
dimension of vector c is in general smaller than the number 
of unknown weights Aw , since generally a small number m 
of additional training data is chosen. We should mention that 
rn refers to the new training set, i.e., the additional samples. 
Uniqueness is imposed by an additional requirement which is 
due to the term E, in (7). In particular, (9) is solved with the 
requirement of minimum degradation of the previous 
network behavior and can lead to: 

z, (xi ) = di for all data in S, 

(13) 
1 
2 

E, = - ( A w ) ~  . K ~ .  K . AW 

automatically identify attributes relevant for cfmsification, 
with respect to this particular criterion. 

Two different acceptability criteria are used for the 
classification of iron losses. According to the first criterion 
one transformer is acceptable, if its actual specific iron losses 
are not greater than L i d %  of the theoretical specific iron 
losses (given by the loss curve). According to the second one 
transformer is acceptable, if its actual specific iron losses are 
in the range f Lim2% of the theoretical losses. Parameters 
Liml% and Lim2% (i.e., threshold values of the transformer 
acceptability criteria) are defined by the transformer designer 
in accordance with customer requirements. The above 
acceptability criteria correspond to alternative customer 
requirements. It should be mentioned that for both 
acceptability criteria comparison is based on specific iron 
losses in order to correspond to the current practice of 
designing wound core distribution transformers, as described 
in Section 2. 

Several DTs were built for various scenarios: two 
different suppliers of magnetic material, three different 
grades of magnetic material, two acceptability criteria, 10 
different values for parameters L i d %  and Lim2% and 48 
different candidate attribute lists. According to these 
scenarios, approximately 6300 DTs were constructed, 
corresponding to various environments and alternative 
customer requirements. The DTs were evaluated on the basis 

304 

Authorized licensed use limited to: National Technical University of Athens. Downloaded on January 8, 2010 at 09:15 from IEEE Xplore.  Restrictions apply. 



AWPKi (W/Kg) 
DWPKi (W/Kg) 

I !  I 

0.754 0.750 0.734 0.740 

0.741 0.741 0.741 0.741 

I !  I 

No. 
#1 

Attributes 
Rated magnetic induction 

1 Core Name 1 c l  1 1 ] T 3 p 1 7 1  

Core Size Small Large Large Small 

AKg, (Kg1 87.3 98.7 98.5 

ASFL, (W) 65.8 72.3 65.1 

Arrangement 
cl-c2-c3-c4 

I I 

Attribute 
#6 #7 #8 AAD 

1.0145 I 1.0012 I 0.9945 0.007072 

c ~ - c ~ - c ~ - c I  1.0051 1.0012 1.0039 0.003376 

#7 

#8 

V. INDIVIDUAL CORE GROUPING PROCESS 

In this paper we enhance the current grouping process 
presented in Section 2 by proposing a new algorithm which 
exploits the advantages of the neural network framework 
proposed in Section 3.  Assuming that we have L small cores 
and L large cores as in Section 2, then U2 transformers can 
be assembled. In this case, the algorithm comprises the 
following steps: 

For each of the different combinations, calculate the 
neural network inputs (8 attributes of Table 3) for each 
one of the L/2 transformers. Using the respective neural 
network weights and thresholds, calculate the network 
output (i.e., the specific iron losses of transformer) for 
each of the U2 transformers and for all combinations. 
For each of the different combinations and for each of 

the UL transformers, calculate the actual iron losses by 
multiplying the neural network output (specific iron 
losses) with the respective actual weight of transformer. 
From all combinations, select the one providing the 

minimum absolute relative error in relation to the 
guaranteed to the customer iron losses. However, in 
case that the number of combinations is too large, only a 
randomly selected small subset of them is used to find a 
relative minimum value. 
For the combination selected in 3,  check if there are 

any transformers, which are not acceptable according to 
transformer acceptability criterion considered. If it 
occurs, then the respective cores should not be grouped, 
awaiting (if possible) other cores of better quality and of 
the same production batch. 

The proposed algorithm is used to improve the grouping 
process of the individual cores so that no unusable cores are 
left at the end of a particular production batch and also to 
reduce the variation in core loss of assembled transformer. 

1. 

2. 

3 .  

4. 

(AWP&.I2+AWPK..I3..)/(DWPK..I2.+DWPK..,3..) 
( A W P K ~ . I ~ + A W P K ~ ~ 1 ~ ) / ( D W P K ~ ~ l ~ + D W P K ~ ~ ~ ~ )  

VI. APPLICATION OF THE PROPOSED METHOD TO 
TRANSFORMER MANUFACTURING INDUSTRY 

In this section results from the application of the proposed 
neural network architecture to transformer specific iron loss 
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prediction are presented. In particular, three different 
environments are considered, each defined in Table 6. For 
example, the #I environment is characterized by magnetic 
steel of grade M3, according to USA AIS1 1983, thickness 
0.23 mm, while the supplier of material was SUP-A 
(Supplier A).  

1 AARE (%) on TS 

Environment 

#1 I #2 I #3 

Current Practice Neural Network 

2.9 1.5 

I supplier I SUP-A I SUKB I SUPA I 

Minimum Error (%) 

Maximum Error (%) 

~~~ ~ 

Steel grade M3 M4 Hi-B 

-6.1 -4.5 

9.9 4.8 

Thickness (mm) [ 0.23 I 0.27 [ 0.23 

Table 6: Environments Selected. 

For the environment considered, the knowledge base 
consists of 2240 actual industrial measurement sets 
(samples). 1680 of them are used as training data in the 
learning process of neural network, while the rest (560) as 
test set (TS). As validation set, we have used the 1/4 of the 
samples of the learning set. 

21 

AARE (a) on TS 

Minimum Error (%) 

Maximum Error (a) 

I 0 7  09 11 13 15 12 19 

Real Speific bm LossCS (w/Kg) I 

3.1 1.7 

-7.1 -4.9 

10.6 5.5 

1 I 
Fig. 4. Prediction of Transformer Specific Iron Losses Using the 

Typical Loss Curve for the #1 Environment. 

A multilayer feedforward neural network structure with 
one output has been found to provide accurate results. The 
input neurons of the network are equal to the number of 
attributes (8) of Table 3 while the network output 
corresponds to the value of the specific iron losses. Using the 
algorithm of Section 3, the size of the hidden layer was 
selected so that it provides the best test results for the given 
environment. In particular, for the #1 environment, one 
hidden layer consisting of a small number of neurons (5 
neurons) is found to be completely adequate. The activation 
functions of all neurons are the sigmoid function. 

The Average Absolute Relative Error (AARE), used to 
evaluate the network performance, is defined as: 

\actual losses - predicted lossed 
&RE=-  

forall N actual losses 
samples 

*loo% (14) 1 

Figures 4 and 5 present the fractile diagrams or the Q-Q 
plots (Quantile-Quantile plots) [14] of the specilk iron 
losses, using the typical loss curve and the proposed neural 
network method, respectively for the #1 environment. 
According to this method the data of real specific iron losses 

are plotted versus the predicted ones. Perfect prediction lies 
on a line of 45' slope. 

I I 
I Prediction oftrarsfomr spec& h n  losses 

0.7 09 11 13 15 17 19 

Rrpl Speific hm h s e s  (w/Kg) 

I I 

Fig. 5. Prediction of Transformer Specific Iron Losses Using the 
ANN method for the #1 Environment. 

I Currentpractice I NeuralNetwork I 

~~~~~~~~~~~~~~~~~ 

b) #2 Environment 

AARE (%) on TS 

Minimum Error (%) 

Maximum Error (%) 
~~~~~ 

c) #3 Environment 

Table 7: Comparison of Current Practice and Neural Network for 
Predicting Transformer Specific Iron Losses. 

It is observed that, on average, the neural network based 
prediction gives more accurate results in the sense that they 
are close to the optimal line of 45' slope. In particular, the 
current method (loss curve) shows a maximum absolute 
relative error of 9.9%, while the respective error in the ANN 
method is 4.8%. On the other hand, the average error is 2.9% 
for the current practice, and 1.5% for the neural network 
method. It is observed that the proposed neural network 
architecture performs better than the conventional method in 
both average and worst case (maximum) error. 

It should be mentioned that this average error (i.e., 1.5%) 
is significantly smaller than that (i.e., 2.2%), provided by the 
neural network architecture, which has been presented in our 
earlier work [5]. This is due to the fact that additional 
attributes have been taken into account in this paper as well 
as a DT methodology has been adopted to select the 
appropriate network inputs. Consequently, the proposed 
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neural network architecture provides an improved accuracy 
by more than 31% in relation to the method presented in [SI 
and an improved accuracy by more than 48% in relation to 
the current practice (loss curve). 

Similar results are also presented for the # 2 and #3 
environments in Table 7. In particular, in #3 the average error 
obtained by the current practice is equal to 3.3% while the 
error estimated by the neural network structure is equal to 
1.8%. Moreover, there is a smaller fluctuation if the absolute 
error is predicted based on the network structure. 

Despite the good performance of the network scheme in 
predicting iron losses, there are some cases after the 
completion of the transformer construction, where the 
prediction error is not acceptable. It should be mentioned that 
the error is calculated based on the difference between the 
predicted value, provided by the network output, and the 
actual value of the specific iron losses, which is available at 
the completion of the construction. In these cases the neural 
network is adaptively trained, i.e., the adaptation mechanism 
is activated and a small perturbation of the network weights 
is performed for improving the prediction accuracy of future 
samples. 

In the experiments considered, we suppose that an AARE 
10% above the average is the upper tolerated limit. That is, 
for the #1 environment where the average error for the initial 
test set (TS) is equal to 1.5% (Table 7a), the accepting limit 
(upper limit, UL) is 1.65%. 

Fig. 6. Prediction Error for Various Production Batches for the 
#1 Environment. 

Fig. 7. Prediction Error for Various Production Batches After 
Adaptation of Weights for the #I Environment. 

Figure 6 illustrates the AARE for 19 batches during the 
transformer construction. It is observed that at the 191h batch, 

the AARE extends the defined threshold and a small 
adaptation of the network weights is activated. After the 
weight adaptation, the AARE on the TS is 1.14% and the 
new upper limit is set to 1.25% (i.e., 10% above the AARE). 
Figure 7 depicts the results obtained after the weight 
adaptation of the following 11 batches. In all cases, AARE 
was within the tolerated interval. 

VU. CONCLUSIONS 

In this paper, a novel neural network framework has been 
applied for predicting core losses at the transformer 
production phase. In particular, two main modules have been 
included in the network structure: A neural network database 
and an adaptation mechanism. The goal of the first module is 
to provide satisfactory results in any case of the environment 
considered, i.e., to a given supplier, thickness and grade of 
magnetic material. The second module slightly modifies the 
network weights when the average absolute relative error is 
above an accepted limit. This approach significantly 
improves the network performance, especially when the 
environment considered has undergone some small changes. 

Attributes have been selected as input vectors for the 
network structure based on decision trees. The most 
significant attributes are chosen out of a large set of candidate 
ones formed by extensive research and using the transformer 
designers’ experience. Finally, based on the good 
performance of the neural network structure, a new 
individual core grouping algorithm has been proposed. This 
algorithm selects, among the various possible combinations 
of grouping cores, the one providing the minimal deviation of 
predicting iron losses from the guaranteed to the customer 
losses. 

Application of the proposed neural network framework to 
transformer manufacturing industry has verified the accurate 
prediction of iron losses in all the examined environments. 
Moreover, reduction of the transformer losses, given the 
individual core losses, is achieved. 
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X. APPENDIXA 

After the production and quality control of individual 
cores the following parameters are known from 
measurements: 
WPK,,,,,, : Specific iron losses of magnetic material of the 

i-th core, i:=“ll”, ...,“ 14”. This value (in W/Kg 
at 15000 Gauss) expresses the quality of 
magnetic material used for core construction. 

WPKi,mfb : Specific iron losses (in WKg at 17000 Gauss) 
of magnetic material of the i-th core, i:=“ll”, 
. . .,“14”. 

AKg, : Actual weight of the i-th core, i:=“l l”, . . ., “14” 
ASFL, : Actual iron losses of the i-th core, 

Based on the previous mentioned measurements the 

The actual total iron losses, say ASFLTp, of the four 

(Al) 
The actual total weight, say AKgTF, of the four individual 

i:=“ll”,. ..,“14” 

following quantities can be evaluated. 

individual cores are: 

ASFhF = ASFL,,. + ASFL,, + ASFL ,3 -t ASFL ,4 

cores are: 

The actual specific iron losses of the of the i-th individual 
core are, say A WPK,, are given by: 

ASFL. 
AWPKi =- ,i:=nll”,...,”14“ 

AkSi 
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